Pattern of substrate utilization in vascular smooth muscle using 13C isotopomer analysis of glutamate.
نویسندگان
چکیده
Although vascular smooth muscle (VSM) derives the majority of its energy from oxidative phosphorylation, controversy exists concerning which substrates are utilized by the tricarboxylic acid (TCA) cycle. We used 13C isotopomer analysis of glutamate to directly measure the entry of exogenous [13C]glucose and acetate and unlabeled endogenous sources into the TCA cycle via acetyl-CoA. Hog carotid artery segments denuded of endothelium were superfused with 5 mM [1-13C]glucose and 0-5 mM [1,2-13C]acetate at 37°C for 3-12 h. We found that both resting and contracting VSM preferentially utilize [1,2-13C]acetate compared with [1-13C]glucose and unlabeled substrates. The entry of glucose into the TCA cycle (30-60% of total entry via acetyl-CoA) exhibited little change despite alterations in contractile state or acetate concentrations ranging from 0 to 5 mM. We conclude that glucose and nonglucose substrates are important oxidative substrates for resting and contracting VSM. These are the first direct measurements of relative substrate entry into the TCA cycle of VSM during activation and may provide a useful method to measure alterations in VSM metabolism under physiological and pathophysiological conditions.
منابع مشابه
C isotopomer analysis of glutamate by heteronuclear multiple quantum coherence-total correlation spectroscopy (HMQC-TOCSY).
13C has become an important tracer isotope for studies of intermediary metabolism. Information about relative flux through pathways is encoded by the distribution of 13C isotopomers in an intermediate pool such as glutamate. This information is commonly decoded either by mass spectrometry or by measuring relative multiplet areas in a 13C NMR spectrum. We demonstrate here that groups of glutamat...
متن کاملInfluence of glycogen storage on vascular smooth muscle metabolism.
The role of glycogen as an oxidative substrate for vascular smooth muscle (VSM) remains controversial. To elucidate the importance of glycogen as an oxidative substrate and the influence of glycogen flux on VSM substrate selection, we systematically altered glycogen levels and measured metabolism of glucose, acetate, and glycogen. Hog carotid arteries with glycogen contents ranging from 1 to 11...
متن کامل13C isotopomer analysis of glutamate by J-resolved heteronuclear single quantum coherence spectroscopy.
13C NMR isotopomer analysis is a powerful method for measuring metabolic fluxes through pathways intersecting in the tricarboxylic acid cycle. However, the inherent insensitivity of 13C NMR spectroscopy makes application of isotopomer analysis to small tissue samples (mouse tissue, human biopsies, or cells grown in tissue culture) problematic. (1)H NMR is intrinsically more sensitive than 13C N...
متن کاملThe role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells
Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...
متن کاملIncorporation and utilization of [3-13C]lactate and [1,2-13C]acetate by rat skeletal muscle.
Skeletal muscle can utilize many different substrates, and traditional methodologies allow only indirect discrimination between oxidative and nonoxidative uptake of substrate, possibly with contamination by metabolism of other internal organs. Our goal was to apply 1H- and 13C-nuclear magnetic resonance spectroscopy to monitor the patterns of [3-13C]lactate and [1,2-13C]acetate (model of simple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American journal of physiology
دوره 275 6 Pt 2 شماره
صفحات -
تاریخ انتشار 1998